

Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

# PEMERIKSAAN BAHAN SUSUN BETON

#### 2.1. Umum

Beton merupakan hasil campuran Semen Portland (PC), agregar halus (pasir), agregat kasar (krikil), dan air dengan atau tanpa bahan tambah (admixtures) dengan proporsi masingmasing bahan tertentu. Bahan tambah (admixtures) adalah bahan yang bukan air, agregat ataupun semen yang ditambahkan ke dalam campuran beton saat atau selama pencampuran. Bahan tambah berfungsi mengubah sifat-sifat beton agar sesuai untuk suatu pekerjaan tertentu, atau menjadi ekonomis, atau untuk tujuan lain.

Kelebihan beton dibanding dengan bahan-bahan yang lain, diantaranya adalah harganya relatif murah, bahan-bahan penyusun beton mudah didapat, mudah dicetak sesuai keinginan, dan beton mempunyai kuat tekan yang tinggi.

Untuk mendapatkan beton yang baik, salah satu diantaranya adalah menggunakan bahan penyusun yang baik (memenuhi persyaratan bahan pembentuk beton). Karena itu perlu dilakukan pemeriksaan dan pengujian bahan di laboratorium.

# 2.2. Pengujian

# 2.2.1. Pengujian Berat Jenis dan Penyerapan Air Agregat Halus.

## 1) Diskripsi

#### a. Maksud dan Tujuan

**Maksud:** metode ini dimaksudkan sebagai pegangan dalam pengujian untuk menentukan berat jenis curah, berat jenis kering permukaan jenuh (SSD), berat jenis semu dan angka penyerapan air dalam agregat halus/pasir.

**Tujuan:** tujuan pengujian ini adalah agar mahasiswa dapat memahami tentang kondisi dan klasifikasi agregat serta cara mencari data untuk mendapatkan angka untuk berat jenis curah, berat jenis kering permukaan jenuh (SSD), berat jenis semu dan angka penyerapan air dalam agregat halus/pasir.

Versi: 2008 Revisi: 0 Halaman: 4 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

#### b. Ruang Lingkup

Pengujian ini di lakukan pada agregat halus/pasir dan sejenisnya, yaitu agregat yang lolos saringan No. 4 (4,75 mm), hasil pengujian ini selanjutnya dapat digunakan dalam pengerjaan :

- Penyelidikan quarry agregat
- Perencanaan campuran dan pengendalian mutu beton
- Perencanaan campuran dan pengendalian mutu perkerasan jalan

#### c. Pengertian

**Berat Jenis Curah** adalah perbandingan antara berat agregat kering dan berat air suling yang isinya sama dengan isi agregat dalam keadaan jenuh pada suhu 25° C.

**Berat Jenis Jenuh Kering Permukaan** (SSD) adalah perbandingan antara berat agregat jenuh kering permukaan dan berat air suling yang isinya sama dengan isi agregat dalam keadaan jenuh pada suhu 25° C.

**Berat Jenis Semu** adalah perbandingan antara berat agregat kering dan berat air suling yang isinya sama dengan isi agregat dalam keadaan kering pada suhu 25° C.

**Penyerapan** adalah perbandingan berat air yang dapat diserap pori terhadap berat agregat kering, dinyatakan dalam persen.

#### 2) Pelaksanaan

#### a. Peralatan yang digunakan

- a) Timbangan kapasitas 2500 gram atau lebih, dengan ketelitian 0,1 gram
- b) Piknometer kapasitas 500 ml
- c) Kerucut terpancung, diameter atas  $(40\pm3)$  mm, diameter bawah  $(90\pm3)$  mm dan tinggi  $(75\pm3)$  mm, terbuat dari logam dengan tebal minimum 0.80 mm
- d) Batang penumbuk yang mempunyai bidang penumbuk rata, berat (340  $\pm$  15) gram dan diameter permukaan penumbuk (25  $\pm$  3) mm
- e) Saringan No. 4 (4,75 mm)
- f) Oven yang dilengkapi dengan pengatur suhu untuk memanasi benda uji sampai suhu  $(110 \pm 5)^{\circ}$  C.
- g) Pengukur suhu dengan ketelitian pembacaan 1° C.
- h) Talam
- i) Bejana tempat air
- j) Desikator.

Versi: 2008 Revisi: 0 Halaman: 5 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

#### b. Benda Uji

Benda uji adalah agregat yang lolos Saringan No. 4 (4,75 mm), diperoleh dari alat pemisah contoh atau cara perempat (*quartering*) sebanyak 1000 gram.

## c. Cara Pengujian

- a) Keringkan benda uji dalam oven pada suhu  $(110 \pm 5)^{\circ}$  C sampai berat benda uji tetap. Yang dimaksud berat tetap adalah keadaan benda uji selama 3 kali proses penimbangan dan pemanasan dalam oven dengan selang waktu 2 jam berturut-turut tidak mengalami perubahan kadar air lebih besar dari 0,1 %, dinginkan pada suhu ruang, kemudian rendam dalam air selama  $24 \pm 4$  jam.
- b) Buang air perendaman dengan hati-hati, jangan sampai ada butiran yang terbuang, tebarkan agregat di atas talam, keringkan di udara panas dengan cara membalik-balikkan benda uji sampai keadaan kering permukaan jenuh
- c) Periksa keadaan kering permukaan jenuh dengan mengisikan benda uji kedalam kerucut terpancung, padatkan dengan batang penumbuk sebanyak 25 kali dan ratakan permukaannya. Keadaan kering permukaan jenuh tercapai bila kerucut terpancung diangkat, benda uji runtuh akan tetapi masih dalam keadaan tercetak
- d) Apabila telah tercapai keadaan kering permukaan jenuh, segera masukkan benda uji sebanyak 500 gram ke dalam piknometer, lalu masukkan air suling sampai mencapai 90 % isi piknometer, putar piknometer sambil di guncangkan sampai tidak terlihat gelembung udara didalamnya. Untuk mempercepat proses ini dapat digunakan pompa hampa udara, tetapi harus diperhatikan jangan sampai terdapat air yang terhisap, dan dapat juga dilakukan dengan merebus piknometer
- e) Rendam piknometer dalam air dan ukur suhu air untuk penyesuaian perhitungan terhadap suhu air standar 25° C
- f) Tambahkan air sampai mencapai tanda batas
- g) Timbang piknometer yang berisi benda uji dan air sampai ketelitian 0,1 gram (Bt)
- h) Keluarkan benda uji dari piknometer, kemudian keringkan dalam oven dengan suhu  $(110 \pm 5)^{\circ}$  C sampai berat tetap, lalu dinginkan benda uji dalam desikator
- i) Setelah benda uji dingin, lalu timbang (Bk)
- j) Timbang berat piknometer penuh berisi air (B), dan ukur suhu air untuk penyesuaian perhitungan terhadap suhu air standar 25° C.

Versi: 2008 Revisi: 0 Halaman: 6 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

# 3) Perhitungan

Berat Jenis Curah = 
$$\frac{Bk}{B + 500 - Bt}$$
 (1)

Berat Jenis Jenuh Kering Permukaan = 
$$\frac{500}{B + 500 - Bt}$$
 .....(2)

Berat Jenis Semu = 
$$\frac{Bk}{B + Bk - Bt}$$
 (3)

$$Penyerapan = \frac{500 - Bk}{Bk}.100\%$$
 (4)

### Keterangan:

Bk : berat benda uji kering oven (gram)B : berat piknometer berisi air (gram)

Bt : berat piknometer berisi benda uji dan air (gram)

500 : berat benda uji dalam keadaan kering permukaan jenuh (gram)

#### 4) Laporan

Hasil dan data-data pengujian dicatat dengan ketelitian dua angka dibelakang koma.

Versi: 2008 Revisi: 0 Halaman: 7 dari 136



|                                                                                        | RI/MODUL MIA                      |                |                          |                                     | 141       |
|----------------------------------------------------------------------------------------|-----------------------------------|----------------|--------------------------|-------------------------------------|-----------|
| ultas<br>di/Diploma/Pasca<br>de Mata Kuliah/Blok<br>na Mata Kuliah/Blok<br>PEMERIKSAAN | : 51101121                        | ruksi<br>YERAF | Modul<br>Jumlal<br>Tangg | ke :<br>h Halaman :<br>al Berlaku : |           |
| Asal Pasir                                                                             |                                   |                |                          |                                     |           |
| Keperluan                                                                              |                                   |                |                          |                                     |           |
|                                                                                        | Uraian                            | Cor            | ntoh 1                   | Contoh 2                            | Rata-rata |
| Berat pasir kering mutla                                                               | ak, gram (Bk                      |                |                          |                                     |           |
| Berat pasir kondisi jenu                                                               | h kering muka (SSD), gram         | ţ              | 500                      | 500                                 | 500       |
| Berat piknometer berisi                                                                | pasir dan air, gram (Bt)          |                |                          |                                     |           |
| Berat piknometer berisi                                                                | air, gram (B)                     |                |                          |                                     |           |
| Berat Jenis Curah, grar                                                                | n/cm³ (1<br>Bk / ( B + 500 – Bt ) | )              |                          |                                     |           |
| Berat Jenis jenuh kering muka, gram/cm³ (2)<br>500 / ( B + 500 – Bt )                  |                                   |                |                          |                                     |           |
| Berat Jenis semu                                                                       | (3<br>Bk / ( B + Bk – Bt )        | )              |                          |                                     |           |
| Penyerapan Air(4)<br>( 500 – Bk ) / Bk x 100%                                          |                                   |                |                          |                                     |           |
| Keterangan: • 500 : berat benda uji                                                    | dalam kondisi jenuh kering m      | uka, da        | lam grar                 | n                                   | •         |
| Kesimpulan                                                                             |                                   |                |                          |                                     |           |
| Diperiksa oleh:                                                                        |                                   |                | Yogyak<br>Dikerjal       | arta,<br>kan oleh:                  |           |

Versi: 2008 Revisi: 0 Halaman: 8 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

# 2.2.2. Pengujian Berat Jenis dan Penyerapan Air Agregat Kasar.

## 1) Diskripsi

### a. Maksud dan Tujuan

**Maksud:** metode ini dimaksudkan sebagai pegangan dalam pengujian untuk menentukan berat jenis curah, berat jenis kering permukaan jenuh (SSD), berat jenis semu dan angka penyerapan air dalam agregat kasar.

**Tujuan:** tujuan pengujian ini adalah agar mahasiswa dapat memahami tentang kondisi dan klasifikasi agregat serta cara mencari data untuk mendapatkan angka berat jenis curah, berat jenis kering permukaan jenuh (SSD), berat jenis semu dan angka penyerapan air dalam agregat kasar.

#### b. Ruang Lingkup

Pengujian ini di lakukan pada agregat kasar/kerikil/split dan sejenisnya, yaitu agregat yang tertahan saringan No. 4 (4,75 mm), hasil pengujian ini selanjutnya dapat digunakan dalam pengerjaan :

- Penyelidikan quarry agregat
- Perencanaan campuran dan pengendalian mutu beton
- Perencanaan campuran dan pengendalian mutu perkerasan jalan

## c. Pengertian

**Berat Jenis Curah** adalah perbandingan antara berat agregat kering dan berat air suling yang isinya sama dengan isi agregat dalam keadaan jenuh pada suhu 25° C.

**Berat Jenis Jenuh Kering Permukaan** (SSD) adalah perbandingan antara berat agregat jenuh kering permukaan dan berat air suling yang isinya sama dengan isi agregat dalam keadaan jenuh pada suhu 25° C.

**Berat Jenis Semu** adalah perbandingan antara berat agregat kering dan berat air suling yang isinya sama dengan isi agregat dalam keadaan kering pada suhu 25° C.

**Penyerapan** adalah perbandingan berat air yang dapat diserap pori terhadap berat agregat kering, dinyatakan dalam persen.

#### 2) Pelaksanaan

## a. Peralatan yang digunakan

a) Timbangan kapasitas 20000 gram atau lebih, dengan ketelitian 0,1 gram dan dilengkapi dengan alat penggantung keranjang

Versi: 2008 Revisi: 0 Halaman: 9 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

- b) Keranjang kawat ukuran 3,35 mm (No.6) atau 2,36 mm (No. 8) dengan kapasitas  $\pm$  5000 gram
- c) Tempat air dengan kapasitas dan bentuk yang sesuai untuk pemeriksaan, tempat ini harus dilengkapi dengan pipa sehingga permukaan air tetap
- d) Alat pemisah contoh
- e) Saringan No. 4 (4,75 mm)
- f) Oven yang dilengkapi dengan pengatur suhu untuk memanasi benda uji sampai suhu  $(110 \pm 5)^{\circ}$  C.
- g) Pengukur suhu dengan ketelitian pembacaan 1° C.
- h) Kain lap, sekop kecil, dan lain-lain.

#### b. Benda Uji

Benda uji adalah agregat yang tertahan Saringan No. 4 (4,75 mm), diperoleh dari alat pemisah contoh atau cara perempat (*quartering*) sebanyak 5000 gram.

## c. Cara Pengujian

- a) cuci benda uji untuk menghilangkan debu atau bahan-bahan lain yang melekat pada permukaan
- b) keringkan benda uji dalam oven pada suhu  $(110 \pm 5)^{\circ}$  C sampai berat tetap. Sebagai catatan, bila penyerapan dan harga berat jenis digunakan dalam pekerjaan beton, dimana agregat yang digunakan pada kadar air aslinya, maka tidak perlu dikeringkan dalam oven
- c) keluarkan benda uji, lalu dinginkan pada suhu kamar selama 1-3 jam, kemudian timbang dengan ketelitian 0,5 gram (Bk)
- d) Rendam benda uji dalam air pada suhu kamar selama  $(24 \pm 4)$  jam
- e) Keluarkan benda uji dari air, lap dengan kain penyerap sampai selaput air pada permukaan hilang, untuk butiran yang besar harus satu persatu
- f) Timbang benda uji kering permukaan jenuh (Bj)
- g) Letakkan benda uji dalam keranjang, goncangkan batunya untuk mengeluarkan udara yang terperangkap dan tentukan beratnya didalam air (Ba), dan ukur suhu air untuk penyesesuaian perhitungan untuk suhu standar 25° C
- h) Banyak jenis bahan campuran yang mempunyai bagian butir-butir yang berat dan ringan. Bahan semacam ini memberikan harga-harga berat jenis yang tidak tetap walaupun pemeriksaan dilakukan dengan teliti. Dalam hal ini beberapa pemeriksaan ulang diperlukan untuk mendapatkan harga rata-rata yang memuaskan.

Versi: 2008 Revisi: 0 Halaman: 10 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

# 3) Perhitungan

Berat Jenis Curah (bulk specifik grafity) = 
$$\frac{Bk}{Bj - Ba}$$
 (1)

Berat Jenis Jenuh Kering Permukaan (SSD) = 
$$\frac{Bj}{Bj - Ba}$$
 .....(2)

Berat Jenis Semu (apparent specific gravity) = 
$$\frac{Bk}{Bk - Ba}$$
 .....(3)

$$Penyerapan = \frac{Bj - Bk}{Bk}.100\% \qquad (4)$$

Keterangan:

Bk : berat benda uji kering oven (gram)

Bj : berat benda uji kering permukaan jenuh (gram)

Ba : berat benda uji kering permukaan jenuh didalam air (gram)

# 4) Laporan

Hasil dan data-data pengujian dicatat dengan ketelitian dua angka dibelakang koma.

Versi: 2008 Revisi: 0 Halaman: 11 dari 136



|                                                                                                                                                                  | RI/MODUL MIA                  |         | 1 1 1 1                  |                                     | 1 <b>V</b> 1 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|--------------------------|-------------------------------------|--------------|
| rakultas : Teknik Sipil dan Perencar<br>rodi/Diploma/Pasca : Teknik Sipil<br>Kode Mata Kuliah/Blok : 51101121<br>Kama Mata Kuliah/Blok : Teknologi Bahan Konstru |                               | ruksi   | Modul<br>Jumlah<br>Tangg | ke :<br>h Halaman :<br>al Berlaku : |              |
|                                                                                                                                                                  | (SNI 03-1969                  |         | 7                        | .,                                  |              |
| Asal Agregat Kasar                                                                                                                                               |                               |         |                          |                                     |              |
| Keperluan                                                                                                                                                        |                               |         |                          |                                     |              |
|                                                                                                                                                                  | Uraian                        | Cor     | ntoh 1                   | Contoh 2                            | Rata-rata    |
| Berat Kerikil kering mutl                                                                                                                                        | ak, gram (Bk                  |         |                          |                                     |              |
| Berat Kerikil kondisi jenuh kering muka, gram (Bj)                                                                                                               |                               | 5       | 000                      | 5000                                | 5000         |
| Berat Kerikil dalam air, gram (Ba)                                                                                                                               |                               | )       |                          |                                     |              |
| Berat Jenis Curah                                                                                                                                                | (1<br>Bk / ( Bj - Ba )        | )       |                          |                                     |              |
| Berat Jenis jenuh kering                                                                                                                                         | g muka,(2<br>Bj / ( Bj - Ba ) | )       |                          |                                     |              |
| Berat Jenis semu                                                                                                                                                 | (3<br>Bk / ( Bk – Ba )        | )       |                          |                                     |              |
| Penyerapan Air                                                                                                                                                   | (4 (Bj – Bk ) / Bk x 100%     | )       |                          |                                     |              |
| Keterangan:  • 5000 : berat benda uj                                                                                                                             | ji dalam kondisi jenuh kering | nuka, d | alam gra                 | am                                  |              |
| Kesimpulan                                                                                                                                                       |                               |         |                          |                                     |              |
| Diperiksa oleh:                                                                                                                                                  |                               |         | Yogyak<br>Dikerjal       | arta,<br>kan oleh:                  |              |

Versi: 2008 Revisi: 0 Halaman: 12 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

## 2.2.3. Pengujian Analisa Saringan Agregat Halus.

## 1) Diskripsi

### a. Maksud dan Tujuan

**Maksud:** metode ini dimaksudkan sebagai pegangan dalam pengujian untuk menentukan pembagian butir (gradasi) agregat halus dengan saringan

**Tujuan :** tujuan pengujian ini adalah agar mahasiswa dapat memahami tentang cara pengujian serta klasifikasi agregat halus berdasarkan butirannya.

## b. Ruang Lingkup

Pengujian ini di lakukan pada agregat halus/pasir dan sejenisnya yang lolos saringan No. 4 (4,75 mm), hasil pengujian ini selanjutnya dapat digunakan dalam pekerjaan :

- Penyelidikan quarry agregat
- Perencanaan campuran dan pengendalian mutu beton

## c. Pengertian

Analisa saringan adalah penentuan prosentase berat butiran agregat yang lolosdari satu set saringan, kemudian angka-angka prosentase digambarkan pada grafik pembagian butir.

#### 2) Pelaksanaan

#### a. Peralatan yang digunakan

- a) timbangan kapasitas 2500 gram atau lebih dengan ketelitian 0,2 % dari berat contoh
- b) satu set saringan: 9,5 mm (3/8"), 4,75 mm (No. 4), 2,36 mm (No. 8), 1,18 mm (No. 16), 0,600 mm (No. 30), 0,300 mm (No. 50), 0,150 mm (No. 100), pan dan tutup saringan
- c) alat pemisah contoh
- d) mesin pengguncang/penggentar saringan
- e) oven yang dilengkapi pengatur suhu untuk memanasi benda uji sampai suhu  $(110 \pm 5)^{\circ}$  C
- f) kain lap, talam, sikat kawat kuningan halus, kuas, dan lain-lain.

#### b. Benda Uji

Benda uji adalah agregat yang lolos Saringan No. 4 (4,75 mm). Benda uji disiapkan berdasarkan standar yang berlaku dan terkait, kecuali apabila butiran yang lolos saringan no. 200 tidak perlu di ketahui jumlahnya dan bila syarat-syarat ketelitian tidak menghendaki pencucian.

Versi: 2008 Revisi: 0 Halaman: 13 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

#### Contoh untuk ukuran butir:

- maksimum 4,76 mm, berat contoh minimum = 500 gram
- maksimum 2,38 mm, berat contoh minimum = 100 gram

## c. Cara Pengujian

- a) Keringkan benda uji dalam oven pada suhu  $(110 \pm 5)^{\circ}$  C sampai berat tetap. Catatan untuk mendapatkan hasil yang teliti, sebaiknya dilakukan minimal 2 kali pengujian.
- b) Keluarkan benda uji, lalu dinginkan pada suhu kamar selama 1-3 jam, kemudian timbang dengan ketelitian 0,5 gram
- c) Susun saringan dari yang lubangnya paling besar dari atas kebawah (jangan terbalik) dan masukkan benda uji kemudian langsung di ayak/saring dengan bantuan mesin penggoyang selama 10 15 menit.
- d) Keluarkan benda uji pada masing-masing saringan dan masukkan dalam masing-masing talam (jangan sampai ada yang tercecer) kemudian ditimbang dan catat berat benda uji yang tertahan pada masing-masing saringan. Dalam pembersihan saringan gunakan sikat untuk lubang kasar (besar) dan kuas untuk lubang yang halus.

## 3) Perhitungan

Hitung prosentase berat benda uji yang tertahan diatas masing-masing saringan terhadap berat total benda uji setelah di saring.

#### 4) Laporan

- a. Masukkan data dalam form jumlah prosentase tertahan diatas masing-masing saringan atau jumlah prosentase lolos masing-masing saringan dalam bilangan bulat
- b. Gambarkan Grafik Komulatif
- c. Hitung Modulus Kehalusan Butir (finess modulus)

Versi: 2008 Revisi: 0 Halaman: 14 dari 136



| Fakultas              | : | Teknik Sipil dan Perencanaan | Pertemuan ke    | : | 1   |
|-----------------------|---|------------------------------|-----------------|---|-----|
| Prodi/Diploma/Pasca   | : | Teknik Sipil                 | Modul ke        | : | 1   |
| Kode Mata Kuliah/Blok | : | 51101121                     | Jumlah Halaman  | : | 136 |
| Nama Mata Kuliah/Blok | : | Teknologi Bahan Konstruksi   | Tanggal Berlaku | : |     |

# MODULUS HALUS BUTIR (MHB) / ANALISA SARINGAN AGREGAT HALUS (SNI 03-1968-1990)

| Asal Agregat          |                               |                            |                                  |                                  |  |
|-----------------------|-------------------------------|----------------------------|----------------------------------|----------------------------------|--|
| Keperluan             |                               |                            |                                  |                                  |  |
| Lubang Ayakan<br>(mm) | Berat<br>Tertinggal<br>(gram) | Berat<br>Tertinggal<br>(%) | Berat<br>Tertinggal<br>Kumulatif | Persen Lolos<br>Kumulatif<br>(%) |  |

| Lubang Ayakan<br>(mm) | Berat<br>Tertinggal<br>(gram) | Berat<br>Tertinggal<br>(%) | Tertinggal<br>Kumulatif<br>(%) | Persen Lolos<br>Kumulatif<br>(%) |
|-----------------------|-------------------------------|----------------------------|--------------------------------|----------------------------------|
| 40,00                 |                               |                            |                                |                                  |
| 20,00                 |                               |                            |                                |                                  |
| 10,00                 |                               |                            |                                |                                  |
| 4,80                  |                               |                            |                                |                                  |
| 2,40                  |                               |                            |                                |                                  |
| 1,20                  |                               |                            |                                |                                  |
| 0,60                  |                               |                            |                                |                                  |
| 0,30                  |                               |                            |                                |                                  |
| 0,15                  |                               |                            |                                |                                  |
| Sisa                  |                               |                            |                                |                                  |
| Jumlah                |                               |                            |                                |                                  |

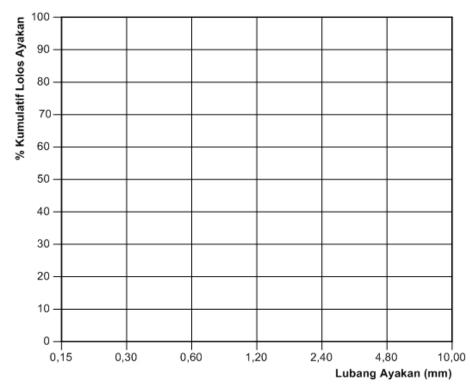
Modulus Halus Butir = \_\_\_\_ =

## **GRADASI PASIR**

| Lubang Ayakan | Persen Butir Agregat yang Lolos Ayakan |           |            |           |  |
|---------------|----------------------------------------|-----------|------------|-----------|--|
| (mm)          | Daerah I                               | Daerah II | Daerah III | Daerah VI |  |
| 10,00         | 100                                    | 100       | 100        | 100       |  |
| 4,80          | 90 - 100                               | 90 - 100  | 90 - 100   | 95 - 100  |  |
| 2,40          | 60 - 95                                | 75 - 100  | 85 - 100   | 95 - 100  |  |
| 1,20          | 30 - 70                                | 55 - 90   | 75 - 100   | 90 - 100  |  |
| 0,60          | 15 - 34                                | 35 - 59   | 60 - 79    | 80 - 100  |  |
| 0,30          | 5 - 20                                 | 80 - 30   | 12 - 40    | 15 - 50   |  |
| 0,15          | 0 - 10                                 | 0 - 10    | 0 - 10     | 0 - 15    |  |

Keterangan: Daerah II : Pasir Kasar Daerah III : Pasir Agak Halus Daerah VI : Pasir Halus

Versi: 2008 Revisi: 0 Halaman: 15 dari 136




Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

# MODULUS HALUS BUTIR (MHB) / ANALISA SARINGAN AGREGAT HALUS (SNI 03-1968-1990)



#### **GAMBAR ANALISA SARINGAN AGREGAT HALUS**



Diperiksa oleh:

Yogyakarta,

Dikerjakan oleh:

Versi: 2008 Revisi: 0 Halaman: 16 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

## 2.2.4. Pengujian Analisa Saringan Agregat Kasar.

## 1) Diskripsi

### a. Maksud dan Tujuan

**Maksud:** metode ini dimaksudkan sebagai pegangan dalam pengujian untuk menentukan pembagian butir (gradasi) agregat kasar dengan saringan

**Tujuan :** tujuan pengujian ini adalah agar mahasiswa dapat memahami tentang cara pengujian serta klasifikasi agregat kasar berdasarkan butirannya.

## b. Ruang Lingkup

Pengujian ini di lakukan pada agregat kasar/kerikil/split dan sejenisnya yang tertahan saringan No. 4 (4,75 mm), hasil pengujian ini selanjutnya dapat digunakan dalam pekerjaan :

- Penyelidikan quarry agregat
- Perencanaan campuran dan pengendalian mutu beton

## c. Pengertian

Analisa saringan agregat adalah penentuan prosentase berat butiran agregat yang lolosdari satu set saringan, kemudian angka-angka prosentase digambarkan pada grafik pembagian butir.

#### 2) Pelaksanaan

#### a. Peralatan yang digunakan

- a) Timbangan kapasitas 20000 gram atau lebih dengan ketelitian 0,2 % dari berat contoh
- b) Satu set saringan: 75 mm (3"), 63,5 mm (2½"), 50,8 mm (2"), 38,1 mm (1½"), 19 mm (¾"), 9,5 mm (3/8"), 4,75 mm (No. 4), 2,36 mm (No. 8), 1,18 mm (No. 16), 0,600 mm (No. 30), 0,300 mm (No. 50), 0,150 mm (No. 100), pan dan tutup saringan.
- c) Alat pemisah contoh
- d) Mesin pengguncang/penggetar saringan
- e) Oven yang dilengkapi pengatur suhu untuk memanasi benda uji sampai suhu  $(110 \pm 5)^{\circ}$  C
- f) Talam, sikat kawat kuningan halus, kuas, dan lain-lain

#### b. Benda Uji

Benda uji adalah agregat kasar/kerikil/split dan sejenisnya yang butirannya kasar. Benda uji disiapkan berdasarkan standar yang berlaku dan terkait kecuali

Versi: 2008 Revisi: 0 Halaman: 17 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

apabila butiran yang melalui saringan No. 200 tidak perlu diketahui jumlahnya dan bila syarat-syarat ketelitian tidak menghendaki pencucian.

Contoh untuk ukuran butir:

• maksimum 3,5", berat contoh minimum = 35,0 kg

• maksimum 3", berat contoh minimum = 30,0 kg

• maksimum 2.5", berat contoh minimum = 25.0 kg

• maksimum 2", berat contoh minimum = 20,0 kg

• maksimum 1,5", berat contoh minimum = 10,0 kg

• maksimum 3/4", berat contoh minimum = 5,0 kg

• maksimum 1/2", berat contoh minimum = 2,5 kg

• maksimum 3/8", berat contoh minimum = 1.0 kg

## c. Cara Pengujian

- a) keringkan benda uji dalam oven pada suhu  $(110 \pm 5)^{\circ}$  C sampai berat tetap. Sebaiknya untuk mendapatkan hasil dengan ketelitian tinggi, dilakukan minimal 2 kali pengujian
- b) keluarkan benda uji, lalu dinginkan pada suhu kamar selama 1-3 jam, kemudian timbang dengan ketelitian 0,5 gram
- c) susun saring dari yang lubangnya paling besar dari atas kebawah (jangan terbalik), masukkan benda uji dan langsung di ayak. Bila tidak tersedia saringan dan mesin pengguncang dengan kapasitas besar, maka pengayakan dilakukan dengan cara manual
- d) keluarkan benda uji dari masing-masing saringan dan letakkan masingmasing pada talam (jangan sampai ada yang tercecer)
- e) timbang dan catat berat benda uji yang tertahan di masing-masing saringan. Dalam pembersihan saringan, gunakan sikat kawat untuk saringan dengan lubang besar, dan kuas untuk lubang yang halus.

## 3) Perhitungan

Hitung prosentase berat benda uji yang tertahan diatas masing-masing saringan terhadap berat total benda uji setelah di saring.

#### 4) Laporan

- a. Masukkan data dalam form jumlah prosentase tertahan diatas masing-masing saringan atau jumlah prosentase lolos masing-masing saringan dalam bilangan bulat
- b. Gambarkan Grafik Komulatif
- c. Hitung Modulus Kehalusan Butir (finess modulus)

Versi: 2008 Revisi: 0 Halaman: 18 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

# MODULUS HALUS BUTIR (MHB) / ANALISA SARINGAN AGREGAT KASAR (SNI 03-1968-1990)

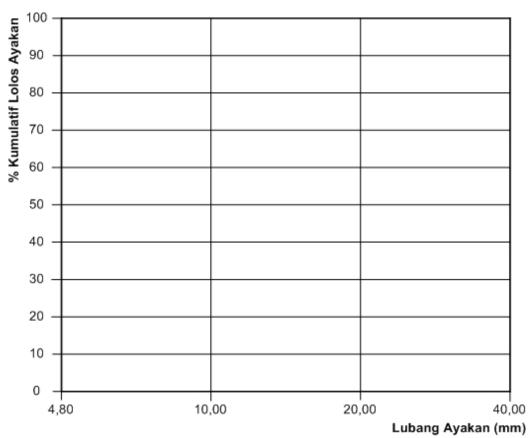
| Asal Agregat |  |
|--------------|--|
| Keperluan    |  |

| Lubang Ayakan<br>(mm) | Berat<br>Tertinggal<br>(gram) | Berat<br>Tertinggal<br>(%) | Berat<br>Tertinggal<br>Kumulatif<br>(%) | Persen Lolos<br>Kumulatif<br>(%) |
|-----------------------|-------------------------------|----------------------------|-----------------------------------------|----------------------------------|
| 40,00                 |                               |                            |                                         |                                  |
| 20,00                 |                               |                            |                                         |                                  |
| 10,00                 |                               |                            |                                         |                                  |
| 4,80                  |                               |                            |                                         |                                  |
| 2,40                  |                               |                            |                                         |                                  |
| 1,20                  |                               |                            |                                         |                                  |
| 0,60                  |                               |                            |                                         |                                  |
| 0,30                  |                               |                            |                                         |                                  |
| 0,15                  |                               |                            |                                         |                                  |
| Sisa                  |                               |                            |                                         |                                  |
| Jumlah                |                               |                            |                                         |                                  |

Modulus Halus Butir = \_\_\_\_ = \_\_\_

#### **GRADASI KERIKIL**

| Lubang Ayakan<br>(mm) | Persen Butir Agregat yang Lolos Ayakan<br>Besar Butiran Maksimum : |          |  |
|-----------------------|--------------------------------------------------------------------|----------|--|
| (11111)               | 40 mm                                                              | 20 mm    |  |
| 40,00                 | 95 - 100                                                           | 100      |  |
| 20,00                 | 30 - 70                                                            | 95 - 100 |  |
| 10,00                 | 10 - 35                                                            | 25 - 55  |  |
| 4,80                  | 0 - 5                                                              | 0 - 10   |  |


Versi: 2008 Revisi: 0 Halaman: 19 dari 136



| Fakultas              | : Teknik Sipil dan Perencanaan | Pertemuan ke : 1     |
|-----------------------|--------------------------------|----------------------|
| Prodi/Diploma/Pasca   | : Teknik Sipil                 | Modul ke : 1         |
| Kode Mata Kuliah/Blok | : 51101121                     | Jumlah Halaman : 136 |
| Nama Mata Kuliah/Blok | : Teknologi Bahan Konstruksi   | Tanggal Berlaku :    |

# MODULUS HALUS BUTIR (MHB) / ANALISA SARINGAN AGREGAT KASAR (SNI 03-1968-1990)

### **GAMBAR ANALISA SARINGAN AGREGAT KASAR**



| Diperiksa oleh: | Yogyakarta,      |
|-----------------|------------------|
|                 | Dikerjakan oleh: |
|                 |                  |

Versi: 2008 Revisi: 0 Halaman: 20 dari 136



| Fakultas              | : Teknik Sipil dan Perencanaan | Pertemuan ke : 1     |
|-----------------------|--------------------------------|----------------------|
| Prodi/Diploma/Pasca   | : Teknik Sipil                 | Modul ke : 1         |
| Kode Mata Kuliah/Blok | : 51101121                     | Jumlah Halaman : 136 |
| Nama Mata Kuliah/Blok | : Teknologi Bahan Konstruksi   | Tanggal Berlaku :    |

# 2.2.5. Pengujian Berat Volume Padat/Gembur Agregat Halus.

## 1) Diskripsi

### a. Maksud dan Tujuan

**Maksud:** metode ini dimaksudkan sebagai acuan dalam pengujian untuk menentukan berat volume padat/gembur agregat halus.

**Tujuan :** tujuan pengujian ini adalah agar mahasiswa dapat memahami tentang cara pengujian serta klasifikasi agregat halus berdasarkan berat volume.

## b. Ruang Lingkup

Pengujian ini di lakukan pada agregat halus/pasir dan sejenisnya yang lolos saringan No. 4 (4,75 mm), hasil pengujian ini selanjutnya dapat digunakan dalam pekerjaan :

- Penyelidikan quarry agregat
- Perencanaan campuran dan pengendalian mutu beton

## c. Pengertian

**Berat Volume Padat** adalah nilai indek dari massa agregat per-satuan volume dalam kondisi padat.

**Berat Volume Gembur** adalah nilai indek dari massa agregat per-satuan volume dalam kondisi tidak padat/gembur.

#### 2) Pelaksanaan

#### a. Peralatan yang digunakan

- a) Timbangan kapasistas 2500 gram atau lebih dengan ketelitian 0,1 % dari berat contoh
- b) Silinder/tabung kapasistas 5 liter
- c) Alat penumbuk dengan diameter 16 mm dan panjang 600 mm
- d) Oven yang dilengkapi pengatur suhu untuk memanasi benda uji sampai suhu  $(110 \pm 5)^{\circ}$  C
- e) Talam, sekop, dan lain-lain.

#### a. Benda Uji

Benda uji adalah agregat halus/pasir dan sejenisnya yang telah dikeringkan.

#### b. Cara Pengujian

a) Keringkan benda uji dalam oven pada suhu  $(110 \pm 5)^{\circ}$  C sampai berat tetap

Versi: 2008 Revisi: 0 Halaman: 21 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

b) Keluarkan benda uji dari oven lantas dinginkan pada suhu kamar selama 1-3 jam, kemudian timbang dengan ketelitian 0,5 gram

- c) Letakkan silinder ukur pada tempat yang datar. Untuk pengujian berat volume padat, masukkan benda uji per 1/3 bagian dan tiap bagian di tumbuk 25 kali merata, lalu diratakan, dikerjakan sampai volume penuh. Sedang untuk pengujian berat volume gembur, benda uji dimasukkan dalam silinder sampai penuh l(tanpa pemadatan) lalu diratakan.
- d) Timbang berat silinder berisi benda uji dan dicatat beratnya
- e) Hitung volume silinder.

## 3) Perhitungan

Hitung nilai berat satuan volume dari hasil pengujian yaitu berat agregat dibagi volume silinder

4) **Laporan.** Masukkan data pengujian dalam form laporan pengujian.

Versi: 2008 Revisi: 0 Halaman: 22 dari 136



Diperiksa oleh:

.....

# MATERI/MODUL MATA PRAKTIKUM

| Fakultas : Teknik Sipil dan Perenca            |                                           | naan Perte | emuan ke    | : 1       |
|------------------------------------------------|-------------------------------------------|------------|-------------|-----------|
| Prodi/Diploma/Pasca                            |                                           |            | ul ke       | : 1       |
| Kode Mata Kuliah/Blo                           |                                           |            | ah Halaman  | : 136     |
| Nama Mata Kuliah/Blo                           | k : Teknologi Bahan Konstru               | ıksi Tang  | gal Berlaku | :         |
| PEMERI                                         | (SAAN BERAT ISI GEMBU<br>(SNI 03-4804-199 |            | GAT HALU    | s         |
| Asal Agregat                                   |                                           |            |             |           |
| Keperluan                                      |                                           |            |             |           |
|                                                |                                           |            |             |           |
|                                                |                                           | Sampel 1   | Sampel 2    | Rata-rata |
| Berat Tabung (W1)                              | gram                                      |            |             |           |
| Berat Tabung + Agregat kering tungku (W2) gram |                                           |            |             |           |
|                                                | . , ,                                     |            |             |           |
| Berat Agregat (W3)                             | gram                                      |            |             |           |
|                                                |                                           |            |             |           |

Versi: 2008 Revisi: 0 Halaman: 23 dari 136

Dikerjakan oleh:

.....



| Fakultas                                       | akultas : Teknik Sipil dan Perenca |           | emuan ke     | : 1       |  |
|------------------------------------------------|------------------------------------|-----------|--------------|-----------|--|
| Prodi/Diploma/Pasca                            | li/Diploma/Pasca : Teknik Sipil    |           | ul ke        | : 1       |  |
| Kode Mata Kuliah/B                             |                                    |           | lah Halaman  | : 136     |  |
| Nama Mata Kuliah/F                             | Blok : Teknologi Bahan Konstr      | uksi Tang | ggal Berlaku | :         |  |
| PEME                                           | T AGREG<br>98)                     | AT HALUS  | ;            |           |  |
| Asal Agregat                                   |                                    |           |              |           |  |
| Keperluan                                      |                                    |           |              |           |  |
|                                                |                                    |           |              |           |  |
|                                                |                                    | Sampel 1  | Sampel 2     | Rata-rata |  |
| Berat Tabung (W1)                              | gram                               |           |              |           |  |
| Berat Tabung + Agregat kering tungku (W2) gram |                                    |           |              |           |  |
| Berat Agregat (W3)                             | gram                               |           |              |           |  |
| Volume Tabung (V)                              | cm <sup>3</sup>                    |           |              |           |  |
| Berat Volume Gembur = ( W3 / V ) gram/cm³      |                                    |           |              |           |  |
|                                                |                                    |           |              |           |  |
| Diperiksa oleh:                                |                                    | Yogyak    | arta,        |           |  |
| Dipetiksa diett.                               |                                    | Dikerjak  | an oleh:     |           |  |

Versi: 2008 Revisi: 0 Halaman: 24 dari 136



| Fakultas              | : Teknik Sipil dan Perencanaan | Pertemuan ke : 1     |
|-----------------------|--------------------------------|----------------------|
| Prodi/Diploma/Pasca   | : Teknik Sipil                 | Modul ke : 1         |
| Kode Mata Kuliah/Blok | : 51101121                     | Jumlah Halaman : 136 |
| Nama Mata Kuliah/Blok | : Teknologi Bahan Konstruksi   | Tanggal Berlaku :    |

# 2.2.6. Pengujian Berat Volume Padat/Gembur Agregat Kasar.

## 1) Diskripsi

### a. Maksud dan Tujuan

**Maksud:** metode ini dimaksudkan sebagai acuan dalam pengujian untuk menentukan berat volume padat/gembur agregat kasar.

**Tujuan :** tujuan pengujian ini adalah agar mahasiswa dapat memahami tentang cara pengujian serta klasifikasi agregat kasar berdasarkan berat volume.

## b. Ruang Lingkup

Pengujian ini di lakukan pada agregat kasar/kerikil/split dan sejenisnya yang tertahan saringan No. 4 (4,75 mm), hasil pengujian ini selanjutnya dapat digunakan dalam pekerjaan :

- Penyelidikan quarry agregat
- Perencanaan campuran dan pengendalian mutu beton

## c. Pengertian

**Berat Volume Padat** adalah nilai indek dari massa agregat persatuan volume dalam kondisi padat.

**Berat Volume Gembur** adalah nilai indek dari massa agregat persatuan volume dalam kondisi tidak padat/gembur.

#### 2) Pelaksanaan

## a. Peralatan yang digunakan

- a) Timbangan kapasistas 20000 gram atau lebih dengan ketelitian 0,1 % dari berat contoh
- b) Silinder/tabung kapasistas 10 liter
- c) Alat penumbuk dengan diameter 16 mm dan panjang 600 mm
- d) Oven yang dilengkapi pengatur suhu untuk memanasi benda uji sampai suhu  $(110 \pm 5)^{\circ}$  C
- e) Talam, sekop, dan lain-lain.

#### b. Benda Uii

Benda uji adalah agregat kasar/kerikil/split dan sejenisnya yang telah dikeringkan.

## c. Cara Pengujian

a) Keringkan benda uji dalam oven pada suhu  $(110 \pm 5)^{\circ}$  C sampai berat tetap

Versi: 2008 Revisi: 0 Halaman: 25 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

b) Keluarkan benda uji dari oven lantas dinginkan pada suhu kamar selama 1-3 jam, kemudian timbang dengan ketelitian 0,5 gram

- c) Letakkan silinder ukur pada tempat yang datar. Untuk pengujian berat volume padat, masukkan benda uji per 1/3 bagian dan tiap bagian di tumbuk 25 kali merata, lalu diratakan, dikerjakan sampai volume penuh. Sedang untuk pengujian berat volume gembur, benda uji dimasukkan dalam silinder sampai penuh (tanpa pemadatan) lalu diratakan.
- d) Timbang berat silinder berisi benda uji dan dicatat beratnya
- e) Hitung volume silinder.

## 3) Perhitungan

Hitung nilai berat satuan volume dari hasil pengujian yaitu berat agregat dibagi volume silinder

### 4) Laporan

Masukkan data dalam form laporan pengujian.

Versi: 2008 Revisi: 0 Halaman: 26 dari 136



| 1411                                                             |                               | 11/11/1           |                     | .0141     |  |
|------------------------------------------------------------------|-------------------------------|-------------------|---------------------|-----------|--|
| Fakultas                                                         | : Teknik Sipil dan Peren      | canaan Per        | temuan ke           | : 1       |  |
| Prodi/Diploma/Pasca                                              | _                             | Mo                | dul ke              | : 1       |  |
| Kode Mata Kuliah/B                                               |                               |                   | ılah Halaman        |           |  |
| Nama Mata Kuliah/F                                               | Blok : Teknologi Bahan Kons   | truksi Tan        | ggal Berlaku        | :         |  |
| PEMERIKSAAN BERAT ISI GEMBUR AGREGAT KASAR<br>(SNI 03-4804-1998) |                               |                   |                     |           |  |
| Asal Agregat                                                     |                               |                   |                     |           |  |
| Keperluan                                                        |                               |                   |                     |           |  |
|                                                                  |                               |                   |                     |           |  |
|                                                                  |                               | Sampel 1          | Sampel 2            | Rata-rata |  |
| Berat Tabung (W1)                                                | gram                          |                   |                     |           |  |
| Berat Tabung + Agr                                               | regat kering tungku (W2) gram |                   |                     |           |  |
| Berat Agregat (W3)                                               | gram                          |                   |                     |           |  |
| Volume Tabung (V)                                                | cm <sup>3</sup>               |                   |                     |           |  |
| Berat Volume Gemi                                                | bur = ( W3 / V ) gram/cm³     |                   |                     |           |  |
| Diperiksa oleh:                                                  |                               | Yogyal<br>Dikerja | karta,<br>kan oleh: |           |  |

Versi: 2008 Revisi: 0 Halaman: 27 dari 136



| 1411 \$             | I EIGH WIGDE           | 17171               |                 | <b>X</b> 2 <b>X 1 X 1 X 1 X X</b> |           |
|---------------------|------------------------|---------------------|-----------------|-----------------------------------|-----------|
| Fakultas            | : Teknik Sipil d       | lan Perenc          | anaan Pe        | rtemuan ke                        | : 1       |
| Prodi/Diploma/Pasca | a : Teknik Sipil       |                     | Me              | odul ke                           | : 1       |
| Kode Mata Kuliah/B  | Blok : 51101121        |                     | Ju              | mlah Halaman                      | : 136     |
| Nama Mata Kuliah/I  | Blok : Teknologi Bal   | han Konstı          | uksi Ta         | nggal Berlaku                     | :         |
| PE                  | MERIKSAAN BERA<br>(SNI | T ISI PA<br>03-4804 |                 | REGAT KAS                         | AR        |
| Asal Agregat        |                        |                     |                 |                                   |           |
| Keperluan           |                        |                     |                 |                                   |           |
|                     |                        |                     |                 |                                   |           |
|                     |                        |                     | Sampel          | 1 Sampel 2                        | Rata-rata |
| Berat Tabung (W1)   |                        | gram                |                 |                                   |           |
| Berat Tabung + Agr  | regat kering tungku (W | 2) gram             |                 |                                   |           |
| Berat Agregat (W3)  |                        | gram                |                 |                                   |           |
| Volume Tabung (V)   | ı                      | cm³                 |                 |                                   |           |
| Berat Volume Gemi   | bur = ( W3 / V ) g     | ıram/cm³            |                 |                                   |           |
| Diperiksa oleh:     |                        |                     | Yogya<br>Dikerj | ıkarta,<br>akan oleh:             |           |
|                     |                        |                     |                 |                                   |           |

Versi: 2008 Revisi: 0 Halaman: 28 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

# 2.2.7. Pengujian Lolos Saringan No. 200 (Uji Kandungan Lumpur dalam Pasir)

## 1) Diskripsi

#### a. Maksud dan Tujuan

**Maksud :** metode ini dimaksudkan sebagai acuan dalam pengujian untuk menentukan prosentase kandungan lumpur dalam pasir sebagai syarat untuk bahan konstruksi bangunan.

**Tujuan:** tujuan pengujian ini adalah agar mahasiswa dapat memahami tentang cara pengujian serta klasifikasi agregat halus sebagai syarat untuk bahan konstruksi, serta mencari data angka kandungan lumpur dalam pasir yang dinyatakan dalam persen.

## b. Ruang Lingkup

Pengujian ini di lakukan pada agregat halus/pasir dan sejenisnya yang lolos saringan No. 4 (4,75 mm), dalam pencucian di air.

#### 2) Pelaksanaan

#### a. Peralatan yang digunakan

- a) Timbangan kapasistas 2500 gram atau lebih dengan ketelitian 0,1 % dari berat contoh yang ditimbang
- b) Saringan 75 mikron (No. 200)
- c) Tempat air untuk pencucian (kran) atau saluran air mengalir
- d) Cawan, sendok
- e) Oven yang dilengkapi pengatur suhu untuk memanasi benda uji sampai suhu  $(110 \pm 5)^{\circ}$  C
- f) Kain lap dan lain-lain.

#### b. Benda Uji

Benda uji adalah agregat kering tungku yang lolos saringan No. 4 (4,75 mm) dengan ukuran benda uji :

- maksimum 2,35 mm, berat contoh minimum = 100 gram
- maksimum 4,75 mm, berat contoh minimum = 500 gram

#### c. Cara Pengujian

- a) Keringkan benda uji dalam oven pada suhu  $(110 \pm 5)^{\circ}$  C sampai berat tetap dan timbang dengan ketelitian 0,1 gram
- b) Letakkan benda uji dalam saringan dan alirkan air diatasnya

Versi: 2008 Revisi: 0 Halaman: 29 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

c) Gerakkan benda uji dalam saringan dengan aliran air yang cukup deras, secukupnya sehingga bagian yang halus menembus saringan No. 200 dan bagian yang kasar tertinggal diatasnya

d) Ulangi pekerjaan diatas hingga air pencucian tetap jernih

e) Keringkan benda uji dalam oven pada suhu  $(110 \pm 5)^{\circ}$  C sampai berat tetap dan timbang dengan ketelitian 0,1 gram

## 3) Perhitungan

Berat yang lolos saringan No. 200 =  $\frac{A - B}{A}$ .100%

dengan: A: berat kering sebelum dicuci (gram)

B: berat kering setelah dicuci (gram)

#### 4) Laporan

Masukkan data dalam form laporan pengujian dan beri kesimpulan apakah agregat halus/pasir tersebut memenuhi syarat untuk bahan konstruksi atau tidak.

Versi: 2008 Revisi: 0 Halaman: 30 dari 136



| Fakultas              | : Teknik S | ipil dan Perencanaan | Pertemuan ke    | : | 1   |
|-----------------------|------------|----------------------|-----------------|---|-----|
| Prodi/Diploma/Pasca   | : Teknik S | ipil                 | Modul ke        | : | 1   |
| Kode Mata Kuliah/Blok | : 5110112  | 1                    | Jumlah Halaman  | : | 136 |
| Nama Mata Kuliah/Blok | : Teknolog | gi Bahan Konstruksi  | Tanggal Berlaku | : |     |

## PEMERIKSAAN BUTIRAN YANG LOLOS AYAKAN NO. 200 /UJI KANDUNGAN LUMPUR DALAM PASIR (SNI 03-4142-1996)

| Asal Pasir |  |
|------------|--|
| Keperluan  |  |

| Ukuran Butir Maksimum | Berat Minimum | Keterangan |
|-----------------------|---------------|------------|
| 4,80 mm               | 500 gram      | Pasir      |
| 9,60 mm               | 1000 gram     | Kerikil    |
| 19,20 mm              | 1500 gram     | Kerikil    |
| 38,00 mm              | 2500 gram     | Kerikil    |

|                                                            | Sampel 1 | Sampel 2 | Rata-rata |
|------------------------------------------------------------|----------|----------|-----------|
| Berat Agregat Kering Oven (W1) gram                        |          |          |           |
| Berat Agregat Kering Oven setelah di cuci (W2) gram        |          |          |           |
| Berat yang Lolos Ayakan No. 200<br>[(W1 – W2) / W1] x 100% |          |          |           |

Menurut Persyaratan Umum Bahan Bangunan di Indonesia 1982 (PUBI-1982), berat bagian yang lolos ayakan no. 200 (0,075 mm):

a. untuk Pasir maksimum 5% (lima persen)

b. untuk Kerikil maksimum 1% (satu persen)

| Diperiksa oleh:  | Yogyakarta,      |
|------------------|------------------|
| Diperiksa oleri. | Dikerjakan oleh: |

.....

Versi: 2008 Revisi: 0 Halaman: 31 dari 136



Fakultas : Teknik Sipil dan Perencanaan Pertemuan ke : 1
Prodi/Diploma/Pasca : Teknik Sipil Modul ke : 1
Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136
Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :

# 2.3. Gambar Peralatan yang digunakan



Timbangan Kapasitas 2600 gram



**Timbangan** 



Timbangan kapasitas 20000 gram



Timbangan Meja

Versi: 2008 Revisi: 0 Halaman: 32 dari 136

: Teknik Sipil dan Perencanaan Fakultas Pertemuan ke : 1 : Teknik Sipil Prodi/Diploma/Pasca Modul ke : 1 Kode Mata Kuliah/Blok : 51101121 Jumlah Halaman : 136

Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi Tanggal Berlaku :



Kerucut Konus dan Piknometer



Piknometer dan Gelas Ukur



Desikator





Saringan



Mesin Saringan

Versi : 2008 Revisi: 0 Halaman: 33 dari 136



Fakultas: Teknik Sipil dan PerencanaanPertemuan ke: 1Prodi/Diploma/Pasca: Teknik SipilModul ke: 1Kode Mata Kuliah/Blok: 51101121Jumlah Halaman: 136

Nama Mata Kuliah/Blok : Teknologi Bahan Konstruksi | Tanggal Berlaku :



Mesin Uji Kekerasan Agregat



Timbangan Duduk (150 kg)

Versi: 2008 Revisi: 0 Halaman: 34 dari 136